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Abstract

Breast cancer incidence and outcomes vary in women of different racial/ethnic backgrounds. Race/ethnicity and tumor biology may affect
outcomes. Since regional lymph node status and tumor markers are strong prognostic indicators, this study examines the role of sentinel lymph node status
(SLNS) and cyclin E levels in outcomes for women of various races/ethnicities with breast cancer. Data was collected for 400 women from two cohort groups
using existing database and medical records. Data included tumor size, nodal status, estrogen receptor status, HER-2/neu status, cyclin E levels and
race/ethnicity. A new database organizes unique study data: socioeconomic status and health-related behaviors. Data quality checks and abstraction
continue. Subjects will be matched for as many factors as possible. The final sample of 50 Whites/non-Hispanic and 50 others, including Hispanics, will be
analyzed to correlate SLNS to race/ethnicity, cyclin E levels to race/ethnicity and SLNS to cyclin E levels. Disease-free survival and overall survival rates
cannot be determined for several years and thus are not available during the award period. It is hypothesized prognostic accuracy of SLNS and cyclin E levels
are independent of racial/ethnic factors. This finding would suggest SLNS and cyclin E levels could discriminate outcomes within different racial/ethnic groups.
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Introduction
The goal of this research is to develop automated methods to analyze daily CT scans taken
during prostate therapy, in order to make adaptive radiation therapy (ART) more effective and
readily implemented. The central technique is deformable image registration, which allows a CT
image acquired for treatment planning to be deformed to match each daily image. The resulting
deformations can then be applied to contours drawn at planning time, to generate segmentations
of treatment images. Inverse deformations can also be applied to dose distributions (represented
as images indicating the dose delivered to each voxel). In this way, the dose distributions can be
deformed into the reference frame of the planning image, and summed over the course of
treatment to determine the total delivered dose. Over the past year we have demonstrated both of
these techniques on data from multiple subjects.

Body

Validation of Automatic Segmentation

We performed a statistical validation of our algorithm by performing segmentation on 48
treatment images from four patients. We found that automatic segmentations derived (by
deformation) from one individual's planning contours matched that individual's later
segmentations at least as well as did segmentations by a different individual. Our analysis was
based on two measures of geometric variation, centroid difference and volume overlap.
Extensive details of this work are given in two related papers, included as Appendices A and B.
With this work, all portions of task 1 in the Statement of Work have been addressed: The
algorithms accommodate rectal filling, dealing in particular with the severe problems caused by
gas (la). We have developed and applied methodologies to validate the algorithms (lb). The
performance of the algorithm has been analyzed using data sets provided by MSKCC as well as
locally acquired data (I c). And our validations quantify inter-rater variability (1d). There
remains work to strengthen our results as our patient sample grows.

Dose Accumulation

The ability to transform the distribution of dose from one treatment day to the planning day, and
then accumulate such doses from different days, makes it possible to analyze how the motion of
an actual patient would affect a treatment plan for that patient. It is thus possible to test novel
treatments against motion data from patients that have already been treated, in what we call a
virtual clinical trial.

When delivered dose is accumulated, the doses delivered to each voxel can simply be
summed over the range of treatments. However, it is also possible to apply models that take into
account the effect of fraction size on the biological effectiveness of a dose. We have used the
linear-quadratic model, as described in Appendix B.

As a baseline, and to illustrate this concept of dose accumulation, for nine subjects we
have evaluated the total delivered dose to the prostate and rectum assuming that no adaptive
radiation therapy had been used. The results are shown in Figure 1, and will be presented as a
poster at the October meeting of the American Society of Therapeutic Radiology and Oncology
(ASTRO). For the prostate, we computed prescribed and delivered EUD, and delivered mean
dose. For the rectum, we computed the percent of the volume receiving more than 65 Gy, and
also the percent receiving more than 40 Gy. These values can be compared to prescribed values
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of 78 for the dose, no more than 17% of the rectum to receive more than 65 Gy, and no more
than 35% to receive more than 40 Gy.

Patient Prescribed prostate Delivered Delivered % of % of rectum
EUD (Gy) prostate EUD prostate mean rectum > 40Gy

dose (Gy) > 65 Gy
1 77.9 74.7 76.3 2 24
2 76.6 73.9 75.6 11
3 78.6 77.8 78.0 1 15
4 75.6 75.9 76.2 9 33
5 76.2 75.3 75.9 8
6 76.8 76.8 76.8 21 43
7 76.0 73.5 74.4 8
8 76.0 77.9 78.0 3 13
9 77.3 75.6 75.7 32 81
Table 1. Prescribed and delivered prostate EUD, delivered prostate mean dose, and the percent
of the rectum receiving greater dose than the thresholds of 65 Gy and 40 Gy.

As an illustration of the concept of a virtual clinical trial, for three patients we have
computed DVHs of delivered BED using the linear-quadratic model. We used a/,Qvalues of 1.5
for the prostate and 4 for the rectum [Brenner 2003]. The patients had been treated with a
conventional course of 39 fractions at 2 Gy per fraction. For comparison, we simulated a
hypofractionation plan with 15 fractions of 3 Gy each. Using the deformation fields computed
for the patients, we computed delivered BED for 15 fractions (using the first 15 imaged
treatments for each patient), and compared it to the planned BED for the hypothetical
hypofractionation plan, along with the planned BED for the plan actually used. The results are
shown in Figure 1.

This work addresses task 2 and provides a framework for task 3.

Key Research Accomplishments
"* Comparison of manual segmentation with our automatic method, using several measures,

indicating that automatic segmentations derived from one individual's planning
segmentation match that person's later segmentations at least as well as manual
segmentations by a different rater.

"* Computation of the actual cumulative dose delivered to both the cancerous and critical
healthy tissues of nine subjects.

"• Dose volume histograms of BED using the linear-quadratic model for three subjects.
"* Article submitted to Physics in Medicine and Biology: "Large deformation 3D image

registration in image-guided radiation therapy," by Mark Foskey, Brad Davis, Lav Goyal,
Sha Chang, Ed Chaney, Nathalie Strehl, Sandrine Tomei, Julian Rosenman, and Sarang
Joshi. Included here as Appendix B.
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Full Length Conference Papers:

B. Davis, M. Foskey, J. Rosenman, L. Goyal, S. Chang, S. Joshi. "Automatic segmentation of
intra-treatment CT images for adaptive radiation therapy of the prostate." To appear in
Proceedings of MICCAI, 2005. Included here as appendix A.

Conclusions

In the past year we have statistically validated our segmentation algorithm, showing its variation
to be within the range of human variation. We have also shown how dose accumulation
algorithms based on image registration can be used to analyze the performance of various
treatment plans in the presence of organ motion. In the remainder of the grant period we hope to
extend these results and take steps toward making them more usable in the clinic.

References

[Brenner 2003] D. Brenner. Measurement of patient positioning errors in three dimensional
conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 57:912-914, 2003.

Appendices

Appendices A and B follow.
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APPENDIX A

Automatic Segmentation of Intra-Treatment CT
Images for Adaptive Radiation Therapy of the

Prostate

B.C. Davis1,2 , M. Foskey 2, J. Rosenman 2, L. Goyal 2, S. Chang2 , and S. Joshil' 2

1 Department of Computer Science, University of North Carolina, USA,

{davisb, joshi}Qcs .unc. edu,
2 Department of Radiation Oncology, University of North Carolina, USA.

Abstract. We have been developing an approach for automatically quan-
tifying organ motion for adaptive radiation therapy of the prostate. Our
approach is based on deformable image registration, which makes it pos-
sible to establish a correspondence between points in images taken on
different days. This correspondence can be used to study organ motion
and to accumulate inter-fraction dose. In prostate images, however, the
presence of bowel gas can cause significant correspondence errors. To ac-
count for this problem, we have developed a novel method that combines
large deformation image registration with a bowel gas segmentation and
deflation algorithm. In this paper, we describe our approach and present
a study of its accuracy for adaptive radiation therapy of the prostate.

1 Introduction

One major treatment method for prostate cancer is external beam radiation
therapy, which uses high energy x-rays that are delivered in a series of 40 or
more daily treatments. To be safe and effective, the radiation dose to the cancer-
containing prostate should be as high as possible while the dose to surrounding
organs such as the rectum and bladder must be limited. This effect is achieved
by using multiple radiation beams that overlap on the tumor and are shaped to
exclude normal tissue as much as possible. However, internal organ motion and
patient setup errors present a serious challenge to this approach. The prostate,
rectum, bladder and other organs move in essentially unpredictable ways, and
even small changes in their position can result in either tumor under-dosing,
normal tissue over-dosing, or both.

Adaptive radiation therapy (ART), which uses periodic intra-treatment CT
images for localization of the tumor and radiosensitive normal structures, is being
investigated to meet this challenge. In this method a feedback control strategy [1]
is used to correct for differences in the planned and delivered dose distributions
due to spatial changes in the treatment volume early in the treatment period.

Although in-treatment-room CT scanners provide the enabling imaging hard-
ware to implement ART, no software methods or tools for automatic image
processing exist to enable the incorporation of these images in the adaptive



treatment of prostate or other cancer. As a result, all such work must be done
manually. However, manual segmentation of the tumor and neighboring organs
places an impractical burden on highly skilled and already overburdened per-
sonnel. Moreover, clinically significant inter- and intra-user variability of manual
segmentations introduces a source of treatment uncertainty that current adap-
tive radiation therapy techniques do not address [2, 3].

We have been developing an approach for automatically quantifying organ
motion over the course of treatment. Our approach is based on deformable im-
age registration, which makes it possible to establish a correspondence between
points in images taken on different days. This correspondence can be used to
study organ motion and to accumulate inter-fraction dose. In prostate images,
however, the presence of bowel gas can cause significant correspondence errors

as no correspondence exists for pockets of gas across different days. Shown in
Figure 1 are two rigidly aligned axial images of a patient taken on two different
days. Due to the transient nature of bowel gas, it is present in one of the days
but absent in the other. To account for this problem, we have developed a novel
method that combines large deformation image registration with a bowel gas

segmentation and deflation algorithm. In this paper, we describe our approach
and present a study of its accuracy for adaptive radiation therapy of the prostate.

Fig. 1. Axial CT slices of the same patient acquired on differcnt days, showing the
effect of bowel gas.

2 Methods

We use the CT taken at planning time, the planning image, as a reference. On

each treatment day, the patient is positioned and then, prior to treatment, a
new CT scan is acquired using an in-treatment-room CT scanner that shares a
table with the linear accelerator (Figure 2). Each treatment image characterizes
the patient configuration at that treatment time.

If there were absolutely no organ motion then the planning and treatment
images should all be the same, except for noise from the imaging device. How-
ever, because there is organ motion, these images will differ, and the difference



Fig. 2. A treatment room set up
for ART: the linear accelerator
shares a table with a CT scanner.
Daily treatment images are used to
"track organ motion over the course
of a multi-week treatment.

characterizes the organ motion. We have understood the motion when we can
tell, for each point in the planning image, which point in the treatment image it
corresponds to. In this way organ motion and image registration are linked-we
can understand organ motion if we can estimate image correspondence.

We can view an image as a function I from the spatial domain Q2 C 1R3 to an
intensity value in IR. Image correspondence is expressed as a function h: 12 -4 12,
called a deformation field. For x e S2, h(x) is the point in the treatment image,
IT, that corresponds to the point x in the planning image, Ip.

The transformation h is estimated as follows. First, the planning and treat-
ment, CT data sets are rigidly registered. This quantifies the rigid patient setup
error. In order to accommodate bowel gas we apply our algorithm for segmenting
and deflating bowel gas to produce deflated images Ip, and IT,. Finally, 1p, and

IT, are registered using a high dimensional large-deformation image registration
algorithm. h is defined as the composition of these transformations.

Rigid Registration The planning and treatment images are thresholded so
that only bone is visible. The region of interest is restricted to the pelvis as it
remains fixed while the femurs and spine can rotate or bend. The rigid transfor-
mation, r, is estimated by an intensity based gradient descent algorithm [4].

Accommodating Bowel Gas As the contrast between gas and surround-
ing tissue is very high in CT images, we create a binary segmentation of the
gas in an image using a simple thresholding operation. We refine this binary
segmentation using a morphological open operation. Next, we construct a de-
flation transformation s based on a flow induced by the gradient of the binary
image. Points along the gas-tissue border, where the gradient is non-zero, flow
in the direction of the gradient. As a result, gas filled regions collapse toward
their medial skeletons-deflating like a balloon.

We construct a non-diffeomorphic deflation transformation s: f2 -+ Q2 such
that I(s(x)) is the image I(x) after a deformation that deflates gas. The trans-
formation s is constructed by integrating velocity fields v(x, t) forward in time,

i.e. s(x) = x + fý' v(s(x, t), t) dt. These velocity fields are induced by a force func-
tion F(x,t) = V(I o st)(x) that is the gradient of the binary image. The force

function and velocity fields are related by the modified Navier-Stokes operator
(aV 2 + OV (V.) + -y)v(x, t) = F(x, t). We solve for s using an iterative greedy
method.



Figure 3 shows the result of our gas deflation algorithm. The large pocket of
gas present in the image has been deflated, resulting in an image that can be
accurately registered using deformable image registration.

(a) (b) (c)

Fig. 3. Gas Deflation Algorithm. (a) CT image with considerable bowel gas. (b)
Zoomed in on the gas pocket. The gas is segmented using simple thresholding. Gas
is deflated by a flow induced by the gradient of the binary image. (c) The deflated
image.

Deformable Image Registration We apply the theory of large deforma-
tion diffeomorphisms [5-7] to generate a deformation hdef: !2Pd --+ f 2Td that
defines a voxel to voxel correspondence between the two gas deflated images Ip,,
and IT,,. The registration is determined by finding the deformation field hdcf
that minimizes the mean squared error between Ip, and the deformed image
IT,, o hdof,

D(h) = j IpI(x) - ITj(hdcf(X))I1 dx.

Following citechristensen96,miller99 the transformation is constrained to be dif-
feomorphic by enforcing that it satisfy laws of continuum mechanics derived from
visco-elastic fluid modeling.

Composite Transformation Correspondence between the original images
Ip and IT is estimated by concatenating the rigid, deflation, and deformable
registration transformations, i.e.

hp-T = rr(ST(hdef(SP' (x))))).

This composite transformation is not guaranteed to be diffeomorphic. However,
the non-diffeomorphic part of the transformation is restricted to the region of
the rectum that contains gas-where no correspondence exists.

Figure 4 shows the result of the method described above. Panel (b) shows
the result of automatic segmentation using only large deformation image regis-
tration. Manually drawn contours of the prostate and rectum are mapped, using
this correspondence, from the reference image (a) onto the daily image. Manual
contours are drawn in red while mapped contours are drawn in yellow. Notice the
misalignment of the manual and automatically generated contours in the daily
image; the presence of bowel gas has caused correspondence errors around the



rectum. A more accurate correspondence between the reference and daily im-
ages is established by concatenating registration and deflation transformations
as shown in panel (c). Notice the close alignment between the manual contours
and the contours generated by our method.

(a) (b) (c)

Fig. 4. Automatic segmentation of the prostate and rectum. Manually segmented struc-
tures in the planning image (a) are mapped to the daily image (b) before accounting
for bowel gas, and (c) after accounting for bowel gas with our gas deflation algorithm.
Manually drawn contours are shown in red and mapped contours are shown in yellow.

3 Results

We now present detailed statistical analysis of the application of our methods
to a set of 40 CT images from 3 patients undergoing ART in our clinic. Each

CT scan was collected on a Siemens Primatom CT-on-rails scanner with resolu-
tion 0.098x0.098x0.3 cm. We analyze the accuracy of our method by comparing
automatically generated segmentations to manual, hand-drawn, segmentations.
Because of inter-rater variability, however, there is no ground truth manual seg-
mentation to compare against. We therefore compare our automatically gener-
ated segmentations with the segmentations from two different manual raters, and
then make the same comparisons between the segmentations from the manual
raters.

The experimental setup is as follows. The planning image for each patient
is manual segmented by rater A. Each treatment image is manually segmented
twice, once by rater A and once by rater B. For each patient, our method is used
to compute the transformations hi that map the planning image onto the treat-
ment image for each day of treatment i. An automatic segmentation is generated

for each treatment image by applying hi to the segmentation in the planning
image. We can consider our automatic method for producing segmentations as
rater C (for "computer").

Each segmentation is represented by a triangulated surface. For manual seg-
mentations, the surface is constructed by applying the power crust algorithm [8]
to a set of contours drawn in the axial plane by the manual raters. For automatic
segmentations, the surface is generated by applying a transformation h to the
vertices of the surface given by the manual segmentation in the planning image.



For each patient and for each treatment day, we make three comparisons:
CA, automatic segmentation verses manual segmentation by rater A; CB, au-
tomatic segmentation verses manual segmentation by rater B; and BA, manual
segmentation by rater B verses manual segmentation by rater A. It should be
emphasized that the automatic segmentations are produced by transforming
manual planning segmentations produced by rater A, not rater B. Thus, we
expect the CA comparisons to be more favorable than' the CB comparisons.

In the rest of this section, we present the results of this experiment when

comparing centroid differences and relative volume overlap of segmentations.
Centroid Analysis The centroid of the prostate is especially important for

radiation treatment planning and therapy because it is the origin, or isocenter,
for the treatment plan. To measure the accuracy of our automatic segmenta-

tions with respect to centroid measurement, we compare the centroid of each
automatic segmentation with the centroids of the corresponding manual segmen-

tations. The differences in the lateral (X), anterior-posterior(Y), and superior-
inferior (Z) directions are measured separately.

Figure 5 shows box and whisker plots of these differences for CA, CB, and BA

comparisons. All measurements are made in centimeters. Additional summary
statistics are presented in table 1.

C '.zl .-frlc: Llr (]() C-tod UK-.~c: Aý-, r.M.H.rlo (Y() - -el mrec:Sp o~etro
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(a) (b) (c)

Fig. 5. Centroid differences in the lateral (X), anterior-posterior (Y), and superior-
inferior (Z) directions (cm). The horizontal lines on the box plots represent the lower
quartile, median, and upper quartile values. The whiskers show the extent of the rest
of the data. Outliers, which fall outside 1.5 times the interquartile range, are denoted
with the '+' symbol.

Shown in Table 1 are the 99% confidence intervals for the true mean of each

distribution of centroid differences. The confidence intervals for the means of the
CA and CB differences both overlap with the confidence interval of the differ-
ences between human raters (AB), and are on the order of one voxel. Note that
the superior-inferior (Z) direction has a slice thickness of 0.3 cm. We conclude
that the automatic segmentation method is as accurate for estimating centroids
as human raters and, as seen by the standard deviations, just as reliable.

Relative Volume Overlap Analysis A measure often reported for compar-
ison of segmentations is relative volume overlap. This measure has been defined



Centroid Difference Summary (cm)
Lateral (X) A-P (Y) Sup-Inf (Z)

CA CB BA CA CB BA CA CB BA

mean -0.026 -0.007 -0.022 0.035 -0.052 0.070 0.022 0.065 -0.046
median -0.018 -0.004 -0.015 0.040 -0.104 0.089 0.030 0.028 -0.054

std. dev. 0.06 0.07 0.08 0.14 0.23 0.20 0.24 0.38 0.38
99% CI min -0.047 -0.030 -0.049 -0.010 -0.129 0.007 -0.054 -0.058 -0.167
99% CI max -0.006 0.016 0.004 0.081 0.023 1 0.133 0.10 0.189 0.073

Table 1. Summary statistics showing mean, median, standard deviation, and 99%
confidence interval of the mean for centroid differences.

in several ways. For this study, we define the relative volume overlap for two
segmentations S 1 and S2 as

6(SIS2)= Volume(Si n S2)
Volume(siuS2)+Volume(sinS 2)) (

Figure 6 (a) shows a box and whisker plot of the relative volume overlap for
the CA, CB, and BA comparisons. To statistically quantify the difference be-
tween the relative volume overlaps of the three segmentations A, B, and C, we
performed right sided t-tests with the alternative hypothesis X > Y. Figure 6,
panel (c), reports the P-values of these tests. It can be seen from the table that

the volume overlap measures for the CA comparisons are significantly higher
than the volume overlap measure for the manaul rater comparison BA. There is
also no statistically significant difference between the relative volume overlaps
from the CB comparison with the two manual raters. Also note that the auto-

matic segmentations have a significantlly better overlap with rater A than with

rater B. This is expected as the planning image was segmented by rater A.

4 Conclusion

We have presented an approach for automatically quantifying organ motion for
adaptive radiation therapy of the prostate. This method extends deformable
image registration to accommodate bowel gas, which creates image regions where

no correspondence exists. We statistically analyzed the accuracy of our automatic
method against the standard of manual inter-rater variation. We showed that for

centroid and volume overlap of the prostate, the automatic method is statistically
indestinguishable from human raters. We are currently working on applying our

method to evaluate the clinical effect of organ motion by measuing effective
delivered dose and biological effect.



Volume Overlap Summary
R..ltive Volum Ov..rlp CAA
40 images from 3 patients CB B B.

mean 0.82 I0.79 -0.79

median 0.84 0.80 0.80
E5± std. dev. 0.06 0.07 0.06

"(b)

0.4 P-Vaues of right sided T-tests

0.I X>Y1 Y=CAo I YooCB I oYAB
CA 0.2A XCB 0.500 0.020 0.014
CA CBX=B 0.980 0.500 0.523

(a) 0476 0
(C)

Fig. 6. (a) Relative volume overlap as measured by Equation 1. The horizontal lines

on the box plots represent the lower quartile, median, and upper quartile values. The
whiskers show the extent of the rest of the data. (b) Volume overlap summary statistics.

(c) P-value results of right sided t-test comparing the relative volume overlaps between

the various rators.
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APPENDIX B

Large deformation 3D image registration in
image-guided radiation therapy

Mark Foskey, Brad Davis, Lay Goyal, Sha Chang, Ed Chaney,
Nathalie Strehl, Sandrine Tomei, Julian Rosenman and Sarang
Joshi
Department of Radiation Oncology, University of North Carolina

E-mail: markIoskey~unc, edu

Abstract. In this paper, we present and validate a framework, based on deformable
image registration, for automatic processing of serial 3D CT images used in image-
guided radiation therapy. A major assumption in deformable image registration has
been that, if two images are being registered, every point of one image corresponds
appropriately to some point in the other. For intra-treatment images of the prostate,
however, this assumption is violated by the variable presence of bowel gas. The

framework presented here explicitly extends previous deformable image registration
algorithms to accommodate such regions in the image for which no correspondence

exists.
We show how to use our registration technique as a tool for organ segmentation, and

present a statistical analysis of this segmentation method, validating it by comparison

with multiple human raters. We also show how the deformable registration technique
can be used to determine the dosimetric effect of a given plan in the presence of
non-rigid tissue motion. In addition to dose accumulation, we describe a method for

estimating the biological effects of tissue motion using a linear-quadratic model. This
work is described in the context of a prostate treatment protocol, but it is of general

applicability.
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1. Introduction

In radiation cancer therapy, the problem of organ motion over the course of treatment is

becoming more urgent as techniques for conformal therapy improve. These techniques,

such as intensity modulated radiation therapy (IMRT), offer important benefits: With

high gradients between the region receiving a therapeutic dose and surrounding regions,

it is possible, in principle, to increase the prescribed dose to the tumor while reducing

the dose to critical organs. The problem with these high gradients is that organ location

varies between treatment days, because of both setup error and internal changes such

as bowel and bladder filling. With high dose gradients, relatively little organ motion is

required to bring parts of the tumor outside of the therapeutic region, or to bring healthy

critical tissues in. Both forms of tissue misplacement can harm the patient, in the one

case by failure of local control, and in the other, by toxicity to normal tissue. There are

now in-the-treatment-room imaging methods, such as cone beam CT and CT-on-rails,

that enable image guided radiation therapy as a way to meet this challenge. However,

there remains a pressing need for automatic techniques to translate these images into

useful information about organ location and likely treatment effectiveness.

The traditional approach to the problem of organ motion has been to specify a

margin around the clihical target volume (CTV) to create the planning target volume

(PTV). The goal of the margin is to achieve a specified confidence level, interpreted as

the probability, at a given treatment session, that actual tumor is contained entirely

within the PTV. Work by Goitein and Busse (1975) and Goitein (1985, 1986) suggests

that a confidence level of 95% is required. Typically, the size of the margin is expressed

as a single parameter, its width, which is based on studies of organ motion across

populations of patients. Sometimes the width is reduced near critical structures. For
instance, with prostate cancer, the size of the margin may be set to 1 cm, with a

reduction to 6 mm toward the rectum (Happersett et al 2003).

This simple construction of the PTV relies on two assumptions that have been

necessitated by technical limitations in treatment planning and delivery. The first

assumption is that organ motion has the same statistical properties for different patients,

so that the variance in organ position for a single patient will be equal to that computed
previously for a population of patients. The second assumption is that organ motion is

statistically the same for all parts of the organ.

To avoid having to make the first assumption, Yan et al (1997) introduced

the framework of adaptive radiation therapy (ART), in which organ motion for the

individual patient is measured over the course of treatment, and the PTV is modified

once the amount of motion for that patient has been estimated with sufficient confidence.

In their work, the position variation is expressed as a single parameter, a 95% confidence
radius for the position of the tumor isocenter, thus still making the assumption that

motion is uniform across the relevant organs.
To account for motion that is not uniform, in which organs deform and move

relative to one another, a more sophisticated analysis of images is necessary. Recent
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computational advances have enabled the emergence of a discipline called computational

anatomy (Grenander and Miller 1998) with the principal aim of developing specialized

mathematical and software tools for the precise mathematical study of anatomical

variability. Within computational anatomy, deformable image registration techniques

have proved to be effective in the study of anatomical variation (Davatzikos 1996,

Christensen et al 1997, Csernansky et al 1998, Joshi et al 1997, Thompson and Toga

2002).
In the framework of computational anatomy, this paper presents a comprehensive

approach for automatic processing of 3D CT images acquired during image guided

radiation therapy. Deformable image registration is the key to the approach, making

it possible to establish a correspondence between points in images taken on different

days. Such a correspondence is useful in two key ways: It facilitates automatic organ

segmentation, and it makes it possible to calculate the dosimetric effects of nonrigid

tissue motion.
The need for careful repeated segmentations has been one of the major limitations

for the widespread application of ART and other image guided techniques. Although

careful manual segmentation techniques remain the standard of practice, a full manual

segmentation of the intra-treatment CT images is time consuming, expensive and not

practical in a routine clinical setting. Moreover, manual segmentation introduces

uncertainties associated with variability both between and within raters. Two

European studies that focused on user-guided tumor segmentation found large inter-user

variabilities for well circumscribed lesions (Leunens et al 1993, Valley and Mirimanoff

1993).

The dosimetric analysis of tissue motion has the potential to permit more

sophisticated ART planning than is currently being pursued (Birkner et al 2003).
A number of groups have studied the dosimetry of rigid patient motion (Booth and

Zavgorodni 2001, Booth 2002, Unkelbach and Oelfke 2004), and there has also been

some work in dosimetric analysis of deforming tissue (Schaly et al 2004, Yan et al

1999). The registration algorithm we describe here differs from previous work in that

it provides a fully automated means of performing dose accumulation that can handle

large deformations.
In the context of radiotherapy of the prostate or cervix, several deformable image

registration methods are currently being investigated for alignment of serial CT data

sets. Schaly et al (2004) use an approach based on thin-plate splines (Bookstein 1989) for

matching CT volumes, where homologous points are chosen from manually drawn organ

segmentations. They use the resulting displacement fields to measure cumulative dose

over multiple fractions for prostate cancer patients. Christensen et al (2001) reported
registration of serial CT images for patients undergoing treatment for cervix cancer.

Their method matches the boundaries of the bladder, rectum, and vagina/uterus, which

are first manually segmented in the planning and treatment images. As with our

work, they use a viscous-fluid model that accommodates large deformation changes
in the anatomy. Wang et al (2005) register CT volumes using a method similar
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to the demons algorithm of Thirion (1998). Their method employs a voxel-based

driving force motivated by optical flow and a Gaussian regularization kernel. They

provide an example of automatic segmentation of a treatment image using the resulting

deformation fields. Lu et al (2004) present a deformable registration technique based

on the minimization of an energy functional that combines an image matching term

with a smoothness measure on the resulting deformation field. However, none of these

studies address the problem of bowel gas for deformable registration of CT images. Also,

while some authors have presented validation studies based on known transformations or

phantoms, to our knowledge none have presented a large scale analysis of the accuracy

of their methods for automatic segmentation of treatment images based on manual

contours.
To give background for what follows, we briefly describe the ART protocol (adapted

from Yan et al 2000) that we use in our regular prostate care. The fundamental purpose

is to use a planning target volume (PTV) that reflects the typical organ motion of

the particular patient. Rather than attempting to determine that motion prior to

treatment, we use a conventional plan during the first five treatment days, at the same

time acquiring a registered CT scan each day. After the fifth treatment day, we construct

a new PTV by placing a margin around the approximate convex hull of the CTVs from

the first five treatment days, and then generate a new plan, this time using IMRT, based

on the new PTV. For the remainder of the treatment period, images are acquired twice

weekly to indicate whether further adjustments may be necessary. For each image, the

patient is first set up for treatment using crosshair tattoos that are aligned with laser

fiducials. Then CT-visible skin markers (2.3-mm "BBs") are placed at the locations

marked by the lasers, so that the treated isocenter is indicated on the scan. In a future

paper we will assess the effectiveness of this protocol in our practice, using the dosimetric

techniques described in this paper.

Shown in figure 1 is a visualization of the organ motion over the course of treatment

for 9 patients treated in our clinic using the ART protocol. The internal organ motion

of the prostate shown in the images was estimated using manual segmentations of intra-

treatment CT images acquired by the CT-on-rails system.

The rest of the paper will be organized as follows. In Section 2 we explain the

registration algorithms that we use. In Section 3 we explain how we use deformable

registration as a tool for segmentation, and evaluate the reliability of the resulting

segmentations. In Section 4 we explain dosimetric applications of our algorithms, and

we conclude in Section 5.

2. Deformable image registration

The key to our approach is the measurement of organ motion by means of deformable

image registration. We interpret the term "organ motion" broadly, to include setup

error and any internal tissue displacement or deformation. We measure organ motion by

comparing a CT image taken at planning time to a treatment image taken immediately
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Figure 1. Visualization of prostate motion over the course of treatment for 9 patients

involved in our study. White contours, superimposed on an axial slice of each patient's

planning image, indicate the actual location of the prostate on each treatment day.
These contours are taken from manual segmentations of treatment images. The

discrepancies between the contours exhibit the effect of setup error and organ motion
on the prostate position. Note that different patients exhibit different amounts of

prostate motion; compare the close contour agreement for patient 3101 with the wide

contour variability for patient 3109. For some patients (3102, 3109) motion is primarily

noticeable in the anterior-posterior direction; for other patients (3106, 3107) motion is
primarily noticeable in the lateral direction.

before a given treatment, both of which are acquired using a Siemens Primatom system
that provides a CT scanner sharing a table with the treatment machine. If there were

no organ motion, the planning image and all the treatment images would be the same,

except for noise from the imaging device. However, because there is organ motion, these
images will differ, and the difference characterizes the motion (figure 2).

Figure 3 compares a difference image between two unregistered images (aligned as

treated) to the difference image for the same two images after registration has been
performed. We have understood the motion when we can tell, for each point in the

planning image, which point in the treatment image it corresponds to. In this way

organ motion and image registration are linked-we can understand organ motion if we

can estimate image correspondence. Once image correspondence is established, contours
of structures such as the tumor body can be transformed, and other detailed analysis

of the changes can be done. The purpose of this section is to explain the registration

algorithms we use to establish the correspondence.
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Figure 2. First row: axial and sagittal slices from the planning image of patient 3102.

Second row: the same slices (with respect to the planning image coordinate system)
taken from a treatment image. Third row: the voxelwise absolute difference between

the planning and treatment images. Black represents perfect intensity agreement,
which is noticeable in the interior of the bones and outside the patient. Brighter regions,

indicating intensity disagreement, are especially apparent: (1) in regions where gas is
present in one image and absent in the other, (2) around the bladder which is large on

the treatment day compared to the planning day, (3) uniformly along boundaries with

high intensity gradient, indicating a global setup error such as a translation.

Difference Before Registration Difference After Registration

Figure 3. Difference images comparing a planning to a daily image before and after

deformable registration.
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In our discussion we use the term tissue voxel to refer to a volume of tissue small

enough to be considered as a single point for the purposes of analysis. We view an

image as a function I(x) from a domain V C R3 to IR, so that I(x) is the intensity of

the image at the point x E V. Then the image correspondence can be expressed as

a function h: V -* V, called a deformation field. For x E V, h(x) is the point in the

treatment image that corresponds to x in the planning image. To the extent that the

image registration corresponds to the tissue motion, h(x) is the location, at treatment

time, of the tissue voxel originally at x. We find h(x) by approximately minimizing an

energy term

E(h) = jy (ip(x) - IT(h(x))) dx, (1)

subject to an appropriate regularity condition. It makes sense to minimize the

squared differences of image intensities directly because the CT intensities (expressed

in Hounsfield units) have direct physical meaning. The fact that the same machine is

used to acquire all images reduces the chance of calibration error.

We decompose the motion into two components, a global rigid transformation

(translation and rotation) followed by a deformation that allows the soft tissue to align.

This decomposition improves performance since the rigid alignment is fast and accounts

for a large portion of the image misalignment. It also makes sense from a clinical

perspective since the rigid misalignment corresponds closely to patient setup error and

can thus be used to provide guidance for improving setup techniques.

2.1. Rigid Motion

We have used both translation and general rigid motion in our work. For clarity we

will explain our algorithm for translation first, after which we will explain the changes

needed for general rigid registration. The algorithm can also be modified for general

affine registration.

In the case of translation, we want to minimize the energy E subject to the condition

that h(x) is of the form x + T for some translation vector T-. Thus (1) becomes

E(TF) = j ( _x -IT(X±+T))2dx

Following Joshi et al (2003), we use a quasi-Newton algorithm to minimize E(T),

constructing a sequence {Tk} such that E(r-k) converges to a local minimum. Let

T-k+l = T-k + Ar-; we will derive a formula for AT. For convenience, write x' = x + Tk. If

we expand IT(x + --k+1) = IT(x' + AT) in a first order Taylor series about x' + AT, we

get

E(Tk+1) Eapprox(AT)

j (Ip(x) - IT(x) + VIT(X')" AT) dx.



Large deformation 3D image registration in image-guided radiation therapy 8

At each step in the iteration we minimize Eapprox(AT) by setting its gradient to 0 and

solving for AT, getting

A ( VIT(X/)VIT(X/)Tdx - IT(X VITW) dx. (2)

In a more general setting, we consider a transformation h that depends on a

parameter vector a as well as x, so that we may write h = ha(x). We then want

to find Aa. The'expression IT(ha(x)) is a function of both x and a, and, in the same

way that (2) was derived, we find that

Aa=- ( VIT(ha(X))VaIT(ha(X)) T dx) -3

Q (ip(x) - IT(ha(X)))VaIT(ha(X))dx.

In the case that h is an affine transformation, VaIT(ha(X)) can be expressed

conveniently in the following way. We define the parameter vector a by

a= [All A 12 A 13 A 21 ... A 3 2 A 33 T1 T2 _-3 ]T.

We then define, for any point x = (xJ, X2, X3),

X1 X2 X3  0 0 0 0 0 0 1 0 0

X-- 0 0 0 x 1  X2 X3  0 0 0 0 1 0
0 0 0 0 0 0 X 1 X 2 X 3 0 0 1

so that Ax +T- = Xa. With this convention, VaIT(ha(x)) = VxITITj(X)X, which can be
easily computed and used in (3).

For rigid registration, as opposed to affine, at each iteration we perform the the

same step as for affine registration, and then project the resulting matrix to the space

of rotation matrices by taking the orthogonal matrix factor of the polar decomposition.

2.2. Deformation

In the case of large deformation registration, rather than constraining h by requiring

that it be expressed in a specific form, we modify the energy functional by adding a
regularity term that quantifies how severely h deforms the image. Thus we get

E(h) = j (Ip (x) - IT (h (X, t))) dx + Ereg (h).

In Bayesian terms, the first term is a likelihood estimate, and the second is a kind of
prior on the space of transformations. The key difficulty in this kind of registration

is to find a prior that permits large deformations but not arbitrary rearrangements of

voxels. The solution that we adopt was first detailed by Christensen et al (1996) and

further developed by Joshi and Miller (2000). The idea is to introduce a time parameter

t and define a function h(x, t) such that h(x, 0) = x and h(x, tfinai) = h(x) is the desired
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deformation field that aligns Ip and IT. We construct h as the integral of a time-varying

velocity field:

h(x, t) = x + v(h(x, s), s) ds,

and we define

Erg (h) = I/V,t Lregv(x,t) 2dxdt

where Lreg is some suitable differential operator. In this way, the size of Ereg is not

directly based on the difference between h(x) and x, which would tend to prevent

large deformations. In the context of landmark-based image registration, Joshi and

Miller (2000) show that this method, with proper conditions on Lreg, produces a

diffeomorphism (i.e. differentiable with a differentiable inverse). As a result, each

position x in the planning image corresponds to a unique position in the treatment

image, and no tearing of tissue is allowed.

Optimization of the resulting functional E(h) is computationally intensive, since

the velocity vector fields for all time steps must be optimized together Miller et al

(2002), Beg et al (2005). Therefore we follow a greedy approach. At each time step,

we choose the velocity field that improves the image match most rapidly, subject to the

smoothness prior. Precisely, for each t we minimize

ds j (Ip(x) - IT(h(x,t) + sv(h(x,t),t))) 2dx + fI ILregV(X,t)JJ2 dx.

After evaluating the derivative and solving the resulting variational problem, we

find that v must satisfy the differential equation

(Ip(x) - IT(h(x,t))) VIw(h(x,t)) = Lv(x,t), (4)

where L is a differential operator proportional to (Lreg)tLreg.

A number of choices of L are reasonable, depending on the desired behavior of

the algorithm. We choose L = aV 2 + /3VV . + -y, a choice motivated by the Navier-

Stokes equations for compressible fluid flow with negligible inertia. If we interpret v

as the velocity field of a fluid, then the left hand side of (4) represents an image force

exerted on each point in the fluid domain. The right hand side of the equation expresses

the resistance to flow. This notional fluid has the nonphysical property that it resists

compression (and dilation) inelastically, so that volume can be permanently added or

removed in response to image forces. Also, the -y term, which can be thought of as

a "body friction" term, ensures that L is a positive definite differential operator, and
hence invertible (Joshi and Miller 2000).

To compute h(x), we integrate the resulting velocity field forward in time until

the change in image match between successive time steps drops below a threshold. At

each time step we find v, using the fast Fourier transform, by explicitly inverting L

in the frequency domain. In the context of landmark-based image registration, Joshi

and Miller (2000) show that this method, with proper conditions on L, does produce a
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diffeomorphism. To make sure that Euler integration, being discrete, does not introduce

singularities, we choose a step size such that the largest distance moved by a voxel

between successive time steps is less than the inter-voxel spacing.

2.3. Bowel Gas

In images of the pelvic region, one problem that arises in deformable image registration is

associated to the presence of bowel gas. Regions of gas appear as black blobs surrounded

by gray tissue (see figures 2 and 4). Typically, there will not be gas at the same

location in the intestine for different images, and in that case there is no reasonable

diffeomorphism between the domains of the two images. That is, if x C V is in a region

containing gas in the planning image, and there is no intestinal gas in the same part of

the treatment image, then there is no location in the treatment image that naturally

corresponds to x, and thus no reasonable value for h(x). Solid bowel contents do not

produce the same difficulty because they do not contrast greatly with the inner wall of

the bowel, and are therefore handled by the compressibility of the fluid flow model.

-0-

(a) (b)

Figure 4. Example of gas deflation. Panel (a) shows an axial slice of a treatment image

containing a large region of bowel gas. Panel (b) shows the same image after automatic

gas deflation. This deflated image can be accurately registered using deformable image

registration.

To resolve the problem of gas, we process each image exhibiting the problem to

shrink the gassy region to a point, using a variation of our image deformation algorithm.

In doing so, we do not aim to simulate the true motion of the tissue but to deflate the

gas so that the image can be accurately registered. The algorithm is defined as follows.

We first threshold the image so that gas appears black and tissue appears white, which is

possible since the contrast between gas and surrounding tissue is very high in CT images.

We then refine this binary segmentation by a morphological opening, contracting and

then dilating the gas region, which eliminates small pockets of gas. Using the refined

segmentation, we compute a deformation field just as for general deformable registration,

by integrating an evolving velocity field v(x, t) to get a deformation field h(x, t). In this

case, the velocity field is computed using the equation

VI(h(x,t)) = Lv(x,t), (5)
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with L as in (4). This causes the boundaries of the gas volumes to shrink towards the

middle, as if deflating a balloon. Figure 4 shows an axial slice of a treatment image

before and after gas deflation.

%I

Figure 5. Example of deformable image registration. The first and last rows show
axial and sagittal slices of the planning and treatment images. The second row shows

the treatment image after deformable image registration, which brings the treatment
image into alignment with the planning image. The improvement in soft tissue
correspondence suggests that the registration procedure accurately captures internal

organ motion. Note how the changes in size and shape of the bladder and rectum are

accounted for.

2.4. The Composite Transformation

We now describe how we combine the translation registration, the general fluid
registration, and the gas deflation computation to calculate a single transformation from
a planning image Ip to a treatment image IT. We first perform the rigid translation to

align the bones as well as possible. For this rigid registration, we choose an intensity
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window such that relatively dense bone appears white (maximum intensity), and other

tissue appears black. We use a region of interest that includes the medial portion of
the pelvis and excludes the femur outside the acetabulum. This computation gives us

a translation vector r.
We then apply the deflation algorithm to Ip and IT to get two new images IP-defl

and IT-defl, with associated deformation fields hp-defl and hT-defl such that IP-defl(x) =

Ip(hp-den(x)), and similarly for IT-dofl. Finally, we apply deformable registration to

IP-defl and IT-defl, yielding the deformation field hTP(defl). Then the full deformation field
warping IT to the space of Ip is given by

hTP(x) = hTdefl(hTP(dcfl)(h-efl(X))) +rT

Accordingly, the point x in the planning image corresponds to the point hTp(x) in the

treatment image. This sequence of transformations can be represented as follows:
h-_1e hTP(defl) hT-defl +

Vp hf Vp-dlefl VTdfl - VT-align • VT.

2.5. Multiscale Registration Implementation

For both rigid and deformable registration we use multiscale techniques to improve

efficiency. We resample the images to 1/2 and 1/4 their original resolutions, and then

apply our registration algorithm to the coarsest image first, using the result to initialize
the algorithm on the next finer image. In the case of deformable registration, we
interpolate the deformation field acquired at one resolution to generate the initialization
for the immediately finer stage. The parameters we use for a, /3, and ' in the definition

of L depend on the coarseness of the scale. The values we have used are shown in

table 1.
The runtime for the full registration algorithm is proportional to the size of

the images being registered, and is dominated by the gas deflation and deformable

registration computations, which require two 3D fast Fourier transforms (FFT) per
iteration. Each FFT requires on the order of n log n floating point operations, where n

is the number of voxels in each image. For our experiments, n ranges from 1,164,942

(81 x 102 x 141) to 7,912,905 (187 x 217 x 195), depending on the patient.
For deformable registration specifically, the time per iteration, averaged over all

patients in our study, is 0.2 sec, 2.0 sec, and 22.7 see for 1/4, 1/2, and full resolution

computations, respectively. Timings for gas deflation are slightly less. These results

were obtained on a PC with 4GB of main memory and dual 3GHz Intel Xeon processors
(although only one processor was used in the computations).

3. Automatic segmentation

The goal of image guidance in radiation therapy is to measure the changes over time of

tumor and organs in both location and shape, so that the treatment can be adjusted
accordingly. In our current ART practice we use manual contouring of organs for this
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Table 1. Parameters used in the regularizing operator L = aV2 + •VV. + 7.

Scale • fl 7 Iterations

Coarse 0.01 0.01 0.001 150
Medium 0.01 0.01 0.001 75
Fine 0.02 0.02 0.0001 25

purpose, but this is problematic because it is time consuming, and because there is
considerable variation even when the same individual contours an image repeatedly on

different days (Collier et al 2003). Instead, using image deformation, it is possible to

carry the contours from the planning image to a daily image, deforming them to match
the new image. This provides an automatic segmentation of the new image, based on

the manual segmentation of the planning image. In this section, we explain our method,

and then present a statistical analysis of its accuracy and reliability.

The idea is to use the deformation fields to move the vertices of the contours from
their locations in the planning image to the corresponding points in the treatment image
(figure 6). This process does not result in a set of planar contours, since vertices will

(a) (b) (c)

Figure 6. Example of automatic segmentation using deformable image registration.
Panel (a) shows an axial slice of a planning image with the prostate labeled by a white
contour. Panel (b) shows the same axial slice (in terms of planning coordinates) from a

treatment image. Patient setup error as well as internal organ motion and changes in

rectal filling are responsible for the misalignment of the planned prostate position
(white) relative to the actual prostate position at treatment time (black, manual
segmentation). Panel (c): The same treatment image and manual (black) contour are

shown. Deformable image registration is used to estimate the correspondence between

the planning and treatment images. The white contour is automatically generated
by deforming the planning prostate segmentation based on this correspondence. The
close agreement of the automatically generated segmentation with the actual prostate

position indicate that the deformable image registration accurately captures the
prostate motion between planning time and treatment time.

typically be moved out of plane to varying degrees. Therefore, instead of working with

the contours directly, we first convert the sequence of contours to a surface model made
up of triangles (figure 7) using an algorithm due to Amenta et al (2001). Then, we

replace each vertex x in the model with h(x), after which we slice the model with planes

parallel to the xy axis to generate a new set of contours.
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Figure 8 permits a visual assessment of the accuracy of our method. This figure is

f femoral heads
bladder

prostate X r\
,,P j seminal vesicles

rectum

(a)

bladder

(b)

Figure 7. Visualization of organ segmentations. Panel (a) is an anterior view of a

3D rendering displaying segmentations of the skin, prostate, rectum, bladder, seminal

vesicles, and femoral heads. Panel (b) shows a lateral view of the prostate, rectum, and

bladder of the same patient. The surfaces are constructed by tiling manually drawn

contours.

similar to figure 1 except that instead of denoting the actual daily prostate positions,
the contours represent the daily prostate positions deformed into the space of the

planning image. The close agreement of the deformed contours indicates that the image

registration algorithm accurately estimates the correspondence between the planning

and treatment images along the prostate boundary. Discrepancies between the deformed

segmentations are a consequence of both image registration errors and intra-rater
variability of the manual, treatment-day segmentations.

Our statistical analysis is based on comparing automatically generated segmenta-

tions to manual, hand-drawn segmentations. However, there is appreciable variation in

manual segmentation, making it unreasonable to choose a particular manual segmenta-

tion as definitive. Groups have reported segmentation variation in a number of contexts,

including brain tumors (Leunens et al 1993), lung cancer (Valley and Mirimanoff 1993,
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Ketting et al 1997), and prostate MR (Zou et al 2004). Rasch et al (1999) reported

inter-user variabilities in the segmentation of the prostate in CT and MRI, finding over-

all observer variation of 3.5mm (1 standard deviation) at the apex of the prostate and

an overall volume variation of up to 5% in CT.

Given this inter-rater variability, we assess our method by comparing our

automatically generated segmentations with the segmentations from one manual rater

(A), and then make the same comparisons between segmentations from a second

manual rater (B) and rater A. We judge the accuracy and reliability of the automatic

segmentations based on the standard of the measured inter-rater variability.

We have acquired CT scans for a total of 138 treatment days from 9 patients

enrolled in our protocol. All of these images have been manually segmented by at least

one expert. However,. due to the time-consuming nature of manual segmentation, images

from only 4 of these patients have been manually segmented by a second expert. We

use images from these 4 patients for the analysis in this section. Eventually we plan to

perform the same analysis for all of the patients enrolled in our protocol, and volume

overlap statistics for the available segmented organs for all 9 patients are presented in

Section 3.2.
The experimental setup is as follows. This study is based on a total of 48 CT

images representing 48 treatment days for 4 patients. Each CT scan was collected prior

to treatment on the Siemens Primatom scanner mentioned above, with a resolution of

0.098 x 0.098 x 0.3 cm. Each planning image is manually segmented by rater A. Each

treatment image is manually segmented twice, once by rater A and once by rater B. For

each patient, our method is used to compute the transformations hi that deformably

align the planning image with the treatment image for each day of treatment i. An

automatic segmentation is generated for each treatment image by applying hi to the

segmentation in the planning image. We consider our automatic method for producing

segmentations as rater C (for "computer").

For each patient and for each treatment day, we make two comparisons: CA,

automatic segmentation versus segmentation by rater A, and BA, comparing manual

segmentations by raters B against those by rater A. It should be emphasized that the

automatic segmentations are produced by transforming manual planning segmentations

produced by rater A, not rater B.
In the rest of this section, we present the results of this experiment when

measuring centroid differences and volume overlap of segmentations. We also show

radial distance maps which help us understand which regions of the prostate have the

largest segmentation differences.

3.1. Centroid Analysis

The centroid of the prostate is especially important for radiation treatment planning

and therapy because it is the origin, or isocenter, for the treatment plan. To measure

the accuracy of our automatic segmentations with respect to centroid measurement,
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Figure 8. Visualization of the result of image registration algorithm. The images

show manual segmentations of each daily image deformed into the space of the planning

image using the deformable image registration. The close agreement of the deformed

segmentations with the position of the prostate in the planning images provides

evidence that the image registration algorithm accurately estimates the correspondence

between planning and treatment images along the prostate boundary.

we compare the centroid of each automatic segmentation with the centroid of the

corresponding manual segmentation.

First we consider the question: Are the centroids of the automatic segmentations

systematically shifted with respect to rater A's segmentation? Let S',, SQ, and S'

denote the prostate segmentations from raters A, B, and C, respectively, for image i.

Let C(.) be a function that returns the centroid (in ]R3) of a segmentation. In order

to determine whether the centroids of the automatic segmentations are systematically

shifted in any particular direction, we examine the distribution of the centroid differences

C(Sý) - C(S'), i E 1, 2,.... N. Likewise, to test for shifts between manual raters A

and B, we examine the distribution C(Sj) -C(Sý). Figure 9 shows box-and-whisker

plots of these differences for the CA and BA comparisons. The differences in the lateral

(X), anterior-posterior (Y), and superior-inferior (Z) directions are measured separately.

Summary statistics are provided in Table 2.

It can be seen from this data that there is no significant shift between centroids

of the computer generated segmentations and rater A's manual segmentations in the

lateral and A-P directions. There is a significant shift (p < 0.001 for two-tailed, paired

t-test) in the sup-inf direction of approximately 0.1 cm, which is one third of the sup-inf
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48 Images from 4 patients
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Figure 9. Centroid differences measured in the lateral (X), anterior-posterior (Y),

and superior-inferior (Z) directions. The horizontal lines on the box plots represent

the lower quartile, median, and upper quartile values. The whiskers indicate the

extent of the rest of the data, except that outliers, which fall more than 1.5 times the

interquartile range past the ends of the box, are denoted with the '+' symbol.

Table 2. Summary statistics for centroid difference distributions C(S') - C(S'A) and

C(SB) - C(S ). The mean, standard deviation, and 95% confidence interval for the

mean are reported.

Lateral (X) A-P (Y) Sup-Inf (Z)

CA BA CA BA CA BA

Mean -0.01 -0.02 0.01 0.06 0.10 0.02

STD 0.08 0.08 0.15 0.20 0.18 0.38

-0.04 -0.05 -0.03 0.00 0.05 -0.09

0.01 0.00 0.06 0.12 0.15 0.14

image resolution (0.3 cm). In all three directions, the standard deviation of the BA

comparisons is as large or larger than the standard deviation of the CA comparisons.

Most notably, the standard deviation of the manual rater comparison is twice as large

as the standard deviation of the automatic-manual comparison in the sup-inf direction.

Next we examine the magnitude of the centroid differences measured by JJC(SA) -

C(Sb)112 and IIC(Sý) - C(Sb)II2, where H1" 112 denotes the 2-norm (Euclidean distance).

Figure 10 shows box-and-whisker plots of these distances, as well as the component

(lateral, A-P, and sup-inf) distances. Summary statistics for these data are presented

in table 3. As the distributions of these distances are not approximately normal, we

report medians and interquartile ranges as well as means and standard deviations.

It is clear from figure 10 that for both raters C and B the least amount of distance
is measured in the lateral (X) direction while the largest distances are measured in the

sup-inf (Z) direction. In fact, the sup-inf distance represents a very large part of the
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Figure 10. Distance between segmentation centroids measured separately in X, Y,

and Z, as well as Euclidean distance.

Table 3. Summary statistics for centroid distance distributions IC(S•) - C(Sý)j and

IC(SB) - C(S,)l.

Lateral (X) A-P (Y) Sup-Inf (Z) Euclidean Distance

CA BA CA BA CA BA CA BA

Mean 0.063 0.060 0.111 0.166 0.162 0.331 0.234 0.404

Median 0.050 0.048 0.073 0.141 0.152 0.348 0.221 0.406

Max 0.174 0.320 0.461 0.489 0.656 0.865 0.657 0.877

STD 0.048 0.054 0.100 0.120 0.128 0.193 0.128 0.178

IQR 0.082 0.051 0.145 0.165 0.174 0.256 0.153 0.206

total distance. Recall that the sup-inf resolution is 0.3 cm, as opposed to the finer 0.098

cm resolution in the lateral and A-P directions.

We see that the centroids of the automatically generated segmentations are

consistently closer to the centroids of rater A's segmentations than are the centroids

for rater B. In the lateral direction, the CA and BA distances are comparable and

within image resolution. In the A-P and sup-inf directions, as well as for the Euclidean

norm, the median distance for the CA comparisons is approximately half that of the BA

comparisons. Furthermore, the median CA distance is within image resolution for these

directions while the median BA distance is not. We tested the CA and BA distances
for equality of their means using two-tailed, paired t-tests, finding p-values of 0.775 and

0.022 in the lateral and A-P directions and less than 0.0001 in the sup-inf direction and

Euclidean norm. The median distance for CA is 0.17 cm less than the median distance

for BA.
We conclude that the automatic segmentation method is as accurate for estimating

centroids as human raters and, as seen by the error bars and standard deviations, at

least as reliable.
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Figure 11. Dice Similarity Coefficient (DSC) and logit DSC for CA and BA

comparisons.

3.2. Volume Overlap Analysis

To measure the coincidence between volumetric segmentations of the prostate we use

the Dice Similarity Coefficient (DSC) of Dice (1945). For two segmentations, S1 and

S2, the DSC is defined as the ratio of the volume of their intersection to their average

volume:
DSC(S 1,S 2) Volume(SI n S2) (6)

1 (Volume(SI)+ Volume(S 2))

The DSC has a value of 1 for perfect agreement and 0 when there is no overlap. A DSC

value of 0.7 or greater is generally considered to indicate a high level of coincidence

between segmentations (Zijdenbos et al 1994, Zou et al 2004). The DSC can be derived
from the kappa statistic for measuring chance-corrected agreement between independent

raters (Zijdenbos et al 1994).

Figure 11 (a) shows a box-and-whisker plot of the Dice similarity coefficient for the

CA and BA comparisons. The mean DSC for the CA comparisons was 0.80 (STD=0.08)
indicating that the automatic segmentations have generally good coincidence with

the manual segmentations. The mean DSC for the two manual raters was similar
(mean=0.78, STD=0.07).

A similar study, carried out by Zou et al (2004), assessed the reliability of manual

prostate segmentations in interoprative MR images. They report a mean DSC for

manual raters of 0.838. Note that because prostate boundaries are more evident in
MR images than in CT images, manual raters are likely to segment MR images more

reliably than CT images.

To evaluate the DSC distributions we use the logit of the DSC (LDSC), defined by

LDSC(S1, S2) = In DSC(S1 ,S 2 )

Agresti (1990) has shown that for large sample sizes (in the case of our prostate

segmentations, the number of voxels is approximately 20000), LDSC has a Gaussian

distribution. Figure 11 (b) shows a box-and-whisker plot of the LDSC values for the

CA and BA comparisons. Summary statistics are reported in table 4.
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Table 4. Summary statistics for the DSC and LDSC measures.

DS C (SS2) LDSC(S 1,S 2)

CA BA CA BA

Mean 0.80 0.78 1.44 1.30

Median 0.82 0.80 1.51 1.39

STD 0.08 0.07 0.49 0.41
IQR 0.13 0.08 0.84 0.50

Table 5. Comparison of automatic segmentation to manual segmenter A via the DSC

and LDSC. This is the full set of segmenter-A segmentations that we have processed.

DSC(S 1 , S2 ) LDSC(S 1 , S 2 )

Prostate Bladder Prostate Bladder

n 76 20 76 20
Mean 0.801 0.816 1.466 1.576

Median 0.825 0.826 1.554 1.557

STD 0.081 0.078 0.494 0.539

IQR 0.121 0.133 0.804 0.034

In order to test for a significant difference between the CA and BA comparisons

we performed a paired t-test on the LDSC values. A one-tailed test shows that the
DSCs for the CA comparisons are significantly (p = 0.005) greater than the DSCs

for BA comparisons. Therefore, the automatic segmentations coincide with rater A's

segmentations better than a second manual rater.

Table 5 summarizes the manual-versus-automatic comparison for segmenter A only,

for all patients that have been processed. After the first five treatment days, the bladder

typically was not segmented.

3.3. Radial Distance Maps

Manual segmenters tend to find some portions of the prostate more difficult to segment

than others. For instance, in CT there is often little or no apparent contrast between

the prostate and bladder. Thus it makes sense to examine segmentation variability as

a function of position on the prostate. For two segmentations X and Y of the same
image, we can visualize the deviation by choosing the centroid of X as a reference point,

and considering, for each ray emanating from the centroid, the distance between the

intersection points of the ray with X and Y. For each surface, we choose the first point

that the given ray intersects that surface; typically there is only one. This procedure
produces a distance for each radial direction, which can be plotted on the surface of a

sphere, producing a radial distance map. This radial distance map is inspired by that

of Mageras et al (2004), but we use a slightly different definition. To display the spherical

map, we use the cartographic equal-area Mollweide projection. Since the patients are
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all scanned in a consistent orientation, different radial distance maps can be compared

directly, and average maps can be computed point by point. Figure 12 shows the mean

radial distance at each point for the cases analyzed in this section. Notice that the

largest variation is generally found in the superior direction, which is consistent with

the observed difficulty of detecting the boundary between prostate and bladder.

Superior 0.5
-0.5

0.4

r 0.35

0.3

Inferior 0.25

Superior S~0.2

0.15

0.05

b. cm0

Figure 12. Radial distance maps, for the prostate. Map a: Mean radial distance

between segmentations A and B (human raters). Map b: Mean distance between A

and C segmentations (human and computer).

4. Dosimetric evaluation of image-guided radiotherapy

The day-to-day effects of organ motion and setup error can be illustrated by computing

a DVH based on the observed organ location on each day. Figure 13 shows DVHs

for the first four days of treatment for patient 3102 of our protocol. The DVHs were

computed by calculating the dose distribution based on the image for the given day,

and applying that distribution to the organ segmentation computed by deforming the

planning segmentations. Day 2 has a particularly severe cold spot, a fact confirmed

by a comparison of the planning and treatment images. In figure 14, contours for the

prostate from both the planning day and treatment day 2 are shown, along with isodose

lines for 95%, 98%, and 100% of prescribed dose. The top panel shows a full axial slice

of the treatment image from Day 2, with an overlaid skin contour from the planning

image as an indication of setup accuracy. The bottom two panels show closer views of

the prostate from the planning and Day 2 images. In the slice shown, roughly half of

the prostate appears to lie outside the 95% dose line.
It is not possible to directly combine a series of DVHs to produce an accurate DVH

for the total dose delivered, because each DVH only indicates how great a volume from
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Figure 13. Daily treatment prostate DVHs for each of the first four days, compared

to the planned DVH.

05% 90% 100% Planning Day Day 2 05% 00% 100% PIannrng I3yDa y 2

Figure 14. The position of the prostate in patient 3102 at day 2 compared to the

time of planning. Top: The treatment image from day 2, shown with a skin contour
from the planning day. Bottom left: Planning image. Bottom right: Day 2 image.

On all three images, the location of the prostate is shown for both days, along with
isodose curves at the 95%, 98%, and 100% level.

a given day received a specific dose. To combine information from different days, one

needs to know the daily dose received by each voxel. Bortfeld et al (2004) provide a

survey on the statistical effects of organ motion on dose distributions, using a rigid

model. In the rest of this section we will describe how to assess total delivered dose in

actual cases, considering deformation, by applying the displacement fields h computed
from deformable image registration. Yan et al (1999), Birkner et al (2003) and Schaly

et al (2004) have all described similar approaches, considering both raw and effective
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dose. However, their image registration algorithms require either that fiducial points be

manually selected in the images, or that all of the images be segmented manually. In

addition, none of these methods permit the range of deformations allowed by the fluid

model.

4.1. Total Delivered Dose

Let the dose per fraction, as a function of position x E V, be given by D(x). Then the

dose received at treatment i, by the tissue originally at x, is given by D(hi(x)), and the

total dose received by that tissue voxel over the course of treatment is given by

DTot(x) = D(hi(x)).

Using this formula, we can compute a distribution for total delivered dose, in the frame

of reference of the planning day. Using the organ segmentations from the planning

image, we can calculate DVHs that correctly reflect the variation in dose distribution

over time. Figure 15 shows a series of delivered DVHs for increasing sets of treatment

days, all normalized to the same prescription dose of 78 Gy. As expected, the quality of
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s- Days 1-9
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Figure 15. Dose volume histograms for delivered dose, estimated over increasing sets

of days. These are compared against the planned dose. All doses are normalized to a

prescription dose of 78 Gy.

the DVH improves as the number of treatments being accumulated is increased, and we

would expect further improvement given images from all 39 treatment days. But note

that the DVH is still quite poor even based on 18 treatments, and that it only improved

modestly over the 9-treatment DVH.

4.2. Effective Cumulative Dose

The difficulty with the measure DTot is that the biological effect does not depend simply

on the total dose received, but also on the way it is distributed into fractions. Consider
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a volume of cells irradiated to a dose D over a time that is short relative to that required
for cell repair to occur. Then the linear quadratic (LQ) model (Fowler 1989) gives the

following estimate of the survival fraction SF of the cells in the volume:

SF(D) = e -oD-P1D
2

Now let T = (D1 , D2,. . . , DN) be a series of varying doses separated by time for cell
recovery. In our situation, the relevant volume of tissue is a voxel x and, for each i,

Di = D(hi(x)). Assuming that cell proliferation is negligible, the survival fraction for
the treatment T will be given by

SF(T) =7Je-D D = exP (Z-aDi - ODi)

Just as with uniform fractionation, one can construct the Biological Effective Dose
(BED; Fowler 1989, Barendsen 1982). The BED is the dose that, if delivered in a series

of fractions so small that the /3 term may be ignored, would kill the same number of cells

as the actual dose in question. That is, we define SF(BED) = e- BED, and compute the
BED for a particular treatment regimen T by setting SF(BED) = SF(T) and solving to

obtain

BED(T) = Di +

Then, following the analysis for the total delivered dose, we can define the total
BED for a tissue voxel x as follows (see also Yan et al 1999, Birkner et al 2003, Schaly

et al 2004):

BEDTot(X) S D(hi(x)) + D(hi(X)) 2  (7)

To illustrate, figure 16 compares the delivered BED to that planned, as estimated

based on the 18 treatment images. That is, the delivered BED was computed by applying
Equation 7 to the appropriate 18 dose distributions and deformation fields, with each

distribution based on a prescription dose of 2 Gy/f. The resulting distribution was
then normalized to a 78 Gy prescription dose by applying a scale factor of 78/36. As
with raw dose accumulation, this estimate does not account for the improvement in

the distribution that would result from averaging together a greater number of random
motions. For the purposes of illustration we assumed a low a/fl value of 1.5 Gy, but

this is not far removed from current estimates (Fowler et al 2001).
Since a 39-fraction regimen is designed to minimize the effect of the quadratic

component on low-a/0 tissue, difference between accumulated raw dose and
accumulated BED is not great (see Fig. 17). Because of evidence indicating that prostate

tumors may have a/fl values comparable to healthy tissue, there is now considerable
discussion of hypofractionation for prostate cancer (Kupelian et al 2002, Brenner 2003,
Craig et al 2003). Figure 18 shows DVHs of accumulated BED for four values of a/f,
assuming a 9-fraction regimen.
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Figure 16. Delivered BED compared to planned BED. Delivered BED is modeled

from a sample of 18 out of 39 treatment days. a/0v = 1.5.
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Figure 17. Comparison of nominal and biologically effective dose, as delivered,

estimated based on 18 treatment days.

5. Discussion

We have described how large deformation image registration can be used for automatic

segmentation and dose accumulation in the course of image guided radiation therapy.

Our image registration technique is fully automatic, permits large deformations, and
ensures a smooth one-to-one correspondence between two images. We use a variation

of the registration method to eliminate bowel gas when it occurs, so that images can be

brought into a meaningful correspondence.
For segmentation purposes, we compute the deformation that transforms the

planning image to match the daily treatment image, and apply that deformation to the

initial manual contours. We have validated this method by comparing the automatic
segmentations to manual segmentations produced by the same segmenter who generated
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Figure 18. Biologically effective DVHs, assuming four possible values of a/03, and 78

Gy delivered in 9 equal fractions. An actual hypofractionation regime would typically

use a smaller total dose, but 78 Gy was used here for comparison with current practice.

the original planning segmentations. Based on centroid difference and the DSC measure

of volume overlap, we find that the automatic deformations of a planning segmenter

correspond at least as closely to the daily segmentations of the same segmenter, as do

daily segmentations by a different individual.

We also show how to use our registration method to estimate the amount of dose

delivered to the patient over time, as a function of position within the imaged area.

In a single case study we compare daily DVHs to both the planned DVH and to

cumulative DVHs, observing that, as expected, the accumulation of multiple fractions

tends to improve the correspondence between delivered and planned DVH, though we

still find a pronounced difference based on 19 images. We also consider the accumulation

of biologically effective dose. For 39 fractions, accumulated BED is very close to

accumulated dose, but hypofractionation schemes lead to a greater difference. In the

future we intend to apply these dose accumulation measures to assess the effectiveness

of protocols both planned and currently in use in our clinic.
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